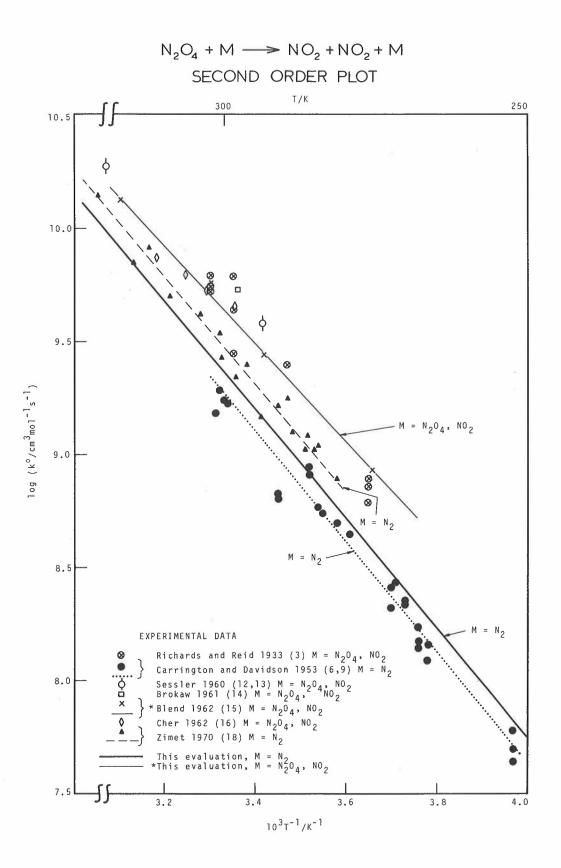
THERMODYNAMIC DATA

Т (К)	∆H ⁰ (kJ mol ⁻¹)	∆S ⁰ (J K ⁻¹ mo1 ⁻¹)	log K _p (K _p in atm)	log K _c (K _c in mol cm ⁻³)	
298	57.11	175.57	-0.84	-5.23	
300	57.11	175.55	-0.77	-5.16	
500	55.54	171.71	3.17	-1.45	
1000	48.82	162.55	5.94	1.03	
1500	41.11	156.31	6.73	1.64	
2000	33.11	151.72	7.06	1.84	
2500	24.99	148.09	7.21	1.90	
3000	16.80	145.11	7.29	1.90	
3500	8.59	142.57	7.32	1.86	
4000	0.34	140.37	7.33	1.81	
4500	- 7.92	138.43	7.32	1.76	
5000	-16.20	136.68	7.31	1.70	
	*				

S.I Units: $\log(K_p/N m^{-2}) = \log(K_p/atm) + 5.006$ $\log(K_c/mol m^{-3}) = \log(K_c/mol cm^{-3}) + 6.000$

RECOMMENDED RATE CONSTANT


 $k^{\circ} = 2.5 \times 10^{17} \exp(-5550/T) \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ (M = N₂) = 4.2 × 10⁻⁷ exp(-5550/T) cm³ molecule⁻¹ s⁻¹ (M = N₂) Temperature Range: 250 - 350 K

Suggested Error Limits for Calculated Rate Constant: ±30% in the temperature range quoted.

Note: BLEND's expression (15) for $M = N_2 O_4 / NO_2$ is also recommended. There is no recommendation for the (limiting) first order rate constant, k^{∞} .

Rate Parameters: $\log(A/cm^3 mol^{-1} s^{-1}) = 17.40 \pm 0.40$ $\log(A/cm^3 molecule^{-1} s^{-1}) = -6.38 \pm 0.40$ $E/J mol^{-1} = 46\ 000 \pm 4000$

$$E/cal mol^{-1} = 11000 \pm 1000$$

but because of the scatter, results are also compatible

with the recommended $E_1 = 46.0$ kJ mol⁻¹ (11.0 kcal mol⁻¹).

Rate Constant k	Temperature (K)	Method and Reference	Comments
SECOND ORDER RATE CONSTANT K ^o			
$> 10^9 \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$	298	Static system. Velocity	Dispersion of sound due to
$M = N_2 0_4$, $N 0_2$		of sound measured in	dissociation of N ₂ 0 ₄ not
2, 2		N ₂ 0 ₄ /NO ₂ mixtures over a	observed up to highest
		range of pressures (140-	frequency used. Not plotted.
		760 mm Hg; 18.6-101.3 kN	
		m ⁻²) and frequencies (20-	
		80 kHz).	
		KISTIAKOWSKY and RICHARDS	
		1930 (1)	
		· •	
-	298	Flow system. Displacement	First attempt to use this
		of equilibrium in N ₂ 0 ₄ /NO ₂	technique. Authors quote
		mixture across a perforated	$-d[N_20_4]/dt = 8.2 \times 10^4 [N_20_4]s^{-1}$
		diaphragm. Changes in	Uncertainties in flow pattern
		pressure and temperature	and measurement of temperatur
		measured. Initial	drop make accuracy doubtful.
		pressure varied (300-700	Not considered in this
		mm Hg; 40-93 kN m ⁻²).	evaluation.
		Final pressure (3-50 mm -2	
		Hg; 0.4-7 kN m ⁻²).	
		BRASS and TOLMAN 1932 (2)	
5.1×10^8	274	Static system. Velocity	Results originally quoted in
7.3 x 10 ⁸	274	of sound measured in	terms of a pseudo-unimolecula
7.8 x 10 ⁸	274	N ₂ 0 ₄ /NO ₂ mixtures over a	rate constant k ₁ . Values of
2.5 x 10 ⁹	288	range of pressures (132-	k ^o have been calculated using
2.8 x 10 ⁹ cm ³ mol ⁻¹ s ⁻¹	298	342 mm Hg; 17.6-45.6 kN	$1/k_{1} = 1/k_{1}^{o}[M] + 1/k_{1}^{o}$
4.4×10^9 M = N ₂ 0 ₄ , NO ₂	298	m^{-2}) and frequencies	and CHER's value for k_1^{∞} (16).
6.2×10^9	298	(9-451 kHz).	Third body efficiencies of
5.2×10^9	30 3	RICHARDS and REID	N_2O_4 and NO_2 are assumed to b
5.5×10^9	303	1933 (3)	the same (16).
6.1 x 10 ⁹)	303		$N_2O_4 + M \rightarrow NO_2 + NO_2 + M$ Authors obtained $E_1 = 58.2\pm3$. kJ mol ⁻¹ (13.9\pm0.9 kcal mol ⁻¹

Rate Constant k	Temperature (K)	Method and Reference	Comments
		RICHARDS and REID 1933 (3) (continued)	Work criticised on several grounds by TEETER (5); rebutted by RICHARDS and REID (4).
4.6 x 10 ⁷ 5.0 x 10 ⁷ 6.2 x 10 ⁷ 1.2 x 10 ⁸ 1.4 x 10 ⁸ 1.4 x 10 ⁸ 1.5 x 10 ⁸ 2.2 x 10 ⁸ 2.3 x 10 ⁸ 2.3 x 10 ⁸ 2.1 x 10 ⁸ 2.3 x 10 ⁸ 2.1 x 10 ⁸ 2.7 x 10 ⁸ 5.5 x 10 ⁸ 6.4 x 10 ⁸ 6.4 x 10 ⁸ 1.7 x 10 ⁹	252 252 265 265 266 266 268 268 270 270 270 270 270 277 279 282 283 284 284 284 284 290 290	Shock tube study. N_2O_4/NO_2 mixtures $(\sim1\%)$ in N_2 and in CO_2 subjected to weak incident shocks. Pressure range 0.5-7 atm (50-709 kN m ⁻²). $[NO_2]$ monitored by light absorption at 404.7 and 435.5 nm. CARRINGTON and DAVIDSON 1951,1953 (6,9)	Dissociation of N_2O_4 second order (first order in N_2 and N_2O_4) at pressures below one atm (101 kN m ⁻²). Curvature in plots of pseudo unimolecular rate constant $-d(ln[N_2O_4])/dt$ vs. [M] observed at higher pressures but high pressure limiting value not reached at 7 atm (709 kN m ⁻²). N_2 and CO_2 have approximately same third body efficiency. Data tabulated taken from fig. 5 of (9). Authors derive k_1° (M = N_2) = 2.0 x 10 ¹⁷ exp(-5550/T) cm ³ mol ⁻¹ s ⁻¹ . Recommended by (17 and 19).
1.7×10^9 1.9 × 10 ⁹	300 301		
$\sim 10^{10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ M = N ₂ 0 ₄ , NO ₂	298	Flow system. Rapid compression of N_2O_4/NO_2 mixtures by flow against impact tube placed in gas stream. Initial pressure varied (0.3-0.7 atm; 30-70 kN m ⁻²). Pressure change measured at impact point. BAUER and GUSTAVSON	Also described in (8). Method not very accurate. Authors indicate that errors due to impurities, precision of pressure measurements and uncertainties in thermodynamic data could lead to errors of at least a factor of 2. Relaxation time τ quoted by authors; present result

Rate Constant k	Temperature (K)	Method and Reference	Comments
		BAUER and GUSTAVSON 1954 (10) (continued)	the reaction to be in its second order region at 1 atm (101 kN m ⁻²). Result not plotted.
3.8 x 10 ⁹ 1.9 x 10 ¹⁰ cm ³ mol ⁻¹ s ⁻¹ M = N ₂ 0 ₄ , NO ₂	293 326	Static system. Measurement of sound absorption in N ₂ O ₄ /NO ₂ mixtures over a range of pressures (1-200 mm Hg; 0.13-26 kN m ⁻²) and frequencies (25-25 000 kHz). SESSLER 1960 (12,13)	Author quotes values of the pseudo-unimolecular rate constant k_1 at 1 atm (101 kN m ⁻²) obtained by extrapolation of pressure dependent values of k_1 found at p < 200 mm Hg (27 kN m ⁻²). Values tabulated here are calculated from k_1 assuming reaction to be in its second order region. Comparing this with results of others (16), this approximation is likely to be accurate to about ±20% at p < 200 mm Hg (27 kN m ⁻²).
$\sim 5.3 \times 10^9 \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ M = N ₂ 0 ₄ , NO ₂	298	Based on work by COFFIN and O'NEAL (13) in which the thermal conductivity of N_2O_4/NO_2 mixtures was measured using the hot wire method. BROKAW treated these results theoretically to give values of k_1^o . BROKAW 1961 (14)	Author suggested that value of k ^o ₁ is an upper limit since heterogeneous contribution would increase apparent rate constant.
$\left.\begin{array}{c}8.51 \times 10^{8}\\2.77 \times 10^{9}\\5.69 \times 10^{9}\\1.60 \times 10^{10}\end{array}\right\} \operatorname{cm}^{3} \operatorname{mol}^{-1} \operatorname{s}^{-1}\\M = \operatorname{N}_{2}^{0} \operatorname{q}^{4}, \operatorname{N}_{2}^{0}$	273 293 303 323	Static system. Measurement of sound velocity in N_2O_4/NO_2 mixtures over a range of pressures (10-700 mm Hg; 13-93 kN m ⁻²) and frequencies (20-800 kHz). BLEND 1962 (15)	Linear plots of $-d(\ln[N_2O_4])/dt$ vs. [M] (total gas concentration) obtained. No evidence for fall-off in pressure range studied. Reaction assumed to be in second order region and $k_1^{\circ} = -d(\ln[N_2O_4])/[M]dt$. Authors derived $k_1^{\circ} = 1.4 \times 10^{17}$ exp(-5170/T) cm ³ mol ⁻¹ s ⁻¹ (M = N_2O_4/NO_2).

Rate Constant k	Temperature (K)	Method and Reference	Comments
4.5 × 10 ⁹	298	Static system.	Linear plots of -(d ln[N ₂ 0 ₄]/
5.4 x 10 ⁹ cm ³ mol ⁻¹ s ⁻¹	303	Measurement of sound	dt) ⁻¹ vs. [M] ⁻¹ , where [M] is
6.3×10^9 M = N ₂ 0 ₄ , NO ₂	308	absorption in N ₂ 0 ₄	the total gas concentration,
7.4 x 10 ⁹	314	mixtures with N ₂ , Ar	found for $M = N_2 O_4 / NO_2$, N_2 ,
5		or CO ₂ over a range of	CO ₂ , Ar. All points fall on
		pressures (100-760 mm	the same line when [M] is
		Hg; 13-101 kN m ⁻²)	calculated according to [M] =
		and frequencies	$[N_2O_4] + a[NO_2] + b[CO_2] +$
		(78-394 kHz).	$c[N_2] + d[Ar]$, with a = 1.0,
		CHER 1962 (16)	b = 1.0, c = 0.5 and d = 0.3.
7.8 × 10 ⁸	279	Shock tube study.	No explicit information given
1.1 × 10 ⁹	283	Mixtures of N ₂ 0 ₄ /NO ₂	about the pressures used;
1.1 × 10 ⁹	283	(<10%) in N ₂ and in	fig. 1 of (18) implies pressure
1.2 × 10 ⁹	284	Ar subjected to weak,	of ~ 200 mm Hg (27 kN m ⁻²).
1.1 × 10 ⁹	285	fully dispersed	Reaction assumed to be in its
1.3 × 10 ⁹	287	shocks. [NO ₂] monitored	second order region. Data
1.8 × 10 ⁹	288	by light absorption at	tabulated were taken from
1.7 × 10 ⁹	290	435 nm.	fig. 2 of (18). Author
1.5 x 10 ⁹	293	ZIMET 1970 (18)	derived k_1° (M = N ₂) = 2.9 x
2.5×10^9 $cm^3 mol^{-1} s^{-1}$	296		10 ¹⁷ exp(-5550/T) cm ³ mol ⁻¹
2.2 x 10^9 M = N ₂ 0 ₄ , NO ₂	298		s ⁻¹ . Similar experiments
2.7 × 10 ⁹	301		with Ar as the diluent gave
3.4×10^9	301		k_1° (M = Ar) = 2.2 x 10 ¹⁷
4.1 × 10 ⁹	305		exp(-5550/T) cm ³ mol ⁻¹ s ⁻¹ .
3.9 × 10 ⁹	307		
5.0 × 10 ⁹	312		
8.2 × 10 ⁹	316		
7.1 × 10 ⁹	320		
1.4×10^{10}	328		

1×10¹⁶ exp(-6600/T) s⁻¹

298

Shock tube study. N_2O_4/NO_2 (1%) in N_2 and in CO_2 subjected to weak incident shock. [NO_2] monitored by light absorption at 404.7 and Pre-exponential factor based on estimate using JOHNSTON's method (7) multiplied by factor of 3. This factor is based on comparison of JOHNSTON's method value for k_1^{∞} in case of

Rate Constant k	Temperature (K)	Method and Reference	Comments
		435.5 nm. Pressures 0.5-7 atm (50-709 kN m ⁻²). CARRINGTON and DAVIDSON 1951,1953 (6,9)	N_2O_5 and N_2O . E_1^{∞} is assumed to be the same as energy of dissociation.
$ \begin{array}{c} 1.7 \times 10^{5} \\ 2.4 \times 10^{5} \\ 4.2 \times 10^{5} \\ 5.3 \times 10^{5} \end{array} $ s ⁻¹	298 303 308 313.5	Static system. Measurement of sound absorption in N_2O_4/NO_2 mixtures with N_2 , Ar or CO_2 over a range of pressures (100-760 mm Hg; 13-101 kN m ⁻²) and frequencies (78- 394 kHz). CHER 1962 (16)	Linear plots of $-(dln[N_2O_4]/dt)^{-1}$ vs. $[M]^{-1}$, where $[M]$ is the total gas concentration, extrapolated to $[M]^{-1} = 0$ to give k_1^{∞} . Long extrapolation likely to introduce substantia error.

DISCUSSION

The decomposition of N_2^{0} occurs by the normal unimolecular mechanism

 $N_2 O_4 + M \xrightarrow{k_a} N_2 O_4^* + M$ $N_2 O_4^* \xrightarrow{k_c} NO_2 + NO_2$

where $N_2 0_4^*$ represents a molecule sufficiently energized to undergo decomposition according to reaction c. There is no evidence for any other mode of decomposition over the temperature range in which the reaction has been studied (250-350 K).

We may define the pseudo-unimolecular rate constant k_1' by

$$- d[N_20_4]/dt = k_1[N_20_4]$$

We then have the relationship

 $1/k_{1}^{\prime} = 1/k_{1}^{\infty} + 1/k_{1}^{0}[M]$

317

where $k_1^{\infty} = k_a k_c / k_b$ and $k_1^{\circ} = k_a$.

At pressures below one atmosphere k_1^{∞} is large compared with $k_1^{\circ}[M]$, and the reaction kinetics approximate closely to second order; even at the highest pressures used (7 atm; 709 kN m⁻²) the high pressure limiting value of k_1^{\prime} (i.e. k_1^{∞}) has not been reached (9).

SECOND ORDER RATE CONSTANT, k1

Most measurements of the rate of reaction 1 have been made at pressures $\leq 1 \text{ atm (101 kN m}^{-2})$ and values of k_1° have been derived by assuming the reaction to be second order (i.e. $k_1' = k_1^{\circ}[M]$). The few existing estimates of k_1° (8,15) suggest that this approximation introduces little error into the determination of k_1° .

A variety of relaxation methods have been used to measure k_1^o - methods based on sound absorption and dispersion, thermal conductivity measurements, shock tube and impact tube techniques. Because the N_2O_4/NO_2 system is simple, with well known thermodynamic properties, and at equilibrium at ambient temperatures there is a substantial proportion of NO_2 (degree of dissociation, $\alpha \approx 0.3$) which can be measured easily, this reaction has in most cases been chosen as the first to be studied by each of these techniques. Such pioneering studies are more likely to contain sources of error than well tested methods and because of this we put little weight on the results of Richards and Reid (3), Sessler (12,13), Brokaw (14) and Bauer and Gustavson (10). The authors of the last three studies themselves claim little accuracy for their results.

The remaining measurements consist of shock tube studies with $M = N_2$ or Ar (9,18) and sound dispersion and absorption with $M = N_2O_4/NO_2$ (15,16). The two shock tube studies give Arrhenius expressions for $M = N_2$ which have the same E_1^o and pre-exponential factors which differ by only 30%. Giving an equivalent weight to each of these studies we recommend

$$k_1^{\circ} = 2.5 \times 10^{17} \exp(-5550/T) \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$
 (M = N₂)

with error limits of $\pm 30\%$ over the temperature range 250 - 350 K.

318

The measurements of k_1^o in $M = N_2 O_4 / NO_2$ have been made by Blend (15) (sound dispersion) and Cher (16) (sound absorption). Cher's results cover a small temperature range and imply a value of E_1^o appreciably less than that of Blend and the shock tube results in nitrogen, but the absolute values of both Blend and Cher are in reasonable agreement. Blend's results cover a wider temperature range and despite a slightly different value for E_1^o are in accord with the shock tube results and the available data on relative third body efficiencies. We recommend use of Blend's expression (15)

$$k_1^{\circ} = 1.4 \times 10^{17} \exp(-5170/T) \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$
 (M = N₂0₄/NO₂)

with error limits of $\pm 30\%$ over the temperature range 250-350 K.

Measurements of third body efficiencies are given in the following table. All values are at 298 K and have been expressed relative to the efficiency of N_2 taken as unity.

M = N ₂	Ar	C0 ₂	N0 ₂	^N 2 ⁰ 4	Reference
1	-	∿Ì	-	-	9
1	0.6	2	2	2	16
1	0.75		-	-	18

There is general agreement that the efficiencies are in the order $NO_2 \simeq N_2O_4 > N_2 > Ar$ but there are insufficient data to make quantitative recommendations.

FIRST ORDER RATE CONSTANT k1

No accurate values are available. Carrington and Davidson's value (6,9) was estimated using Johnston's method (7) and a relatively arbitrary correction factor. Cher's value (16) was obtained by a long extrapolation of a plot of 1/k' versus 1/[M] to 1/[M] = 0. The values differ by about a factor of 5 and at best can only be considered as giving the order of magnitude of k_1^{∞} .

319

REFERENCES

- G.B. Kistiakowsky and W.T. Richards, <u>J. Amer</u>. <u>Chem. Soc.</u>, <u>52</u> 4661 (1930).
- P.D. Brass and R.C. Tolman, <u>J. Amer. Chem</u>. <u>Soc.</u>, <u>54</u> 1003 (1932).
- W.T. Richards and J.A. Reid, <u>J. Chem. Physics</u>, <u>1</u> 114 (1933).
- W.T. Richards and J.A. Reid, <u>J. Chem. Physics</u>, <u>1</u> 737 (1933).
- 5. C.E. Teeter, <u>J. Chem. Physics</u>, <u>1</u> 251 (1933).
- T. Carrington and N. Davidson, <u>J. Chem</u>. <u>Physics</u>, <u>19</u> 1313 (1951).
- H.S. Johnston, <u>J. Chem. Physics</u>, <u>20</u>
 1103 (1952).
- 8. S.H. Bauer, <u>J. Physic. Chem</u>., <u>57</u> 424 (1953).
- T. Carrington and N. Davidson, <u>J. Physic. Chem</u>., <u>57</u> 418 (1953).
- S.H. Bauer and M.R. Gustavson, <u>Disc. Faraday</u> <u>Soc.</u>, <u>17</u> 69 (1954).

- 11. K.P. Coffin and C. O'Neal, Jr., <u>National</u> <u>Advisory Committee on Aeronautics</u>, TN 4209 (1958).
 - 12. G. Sessler, <u>Acustica</u>, <u>9</u> 119 (1959).
 - 13. G. Sessler, <u>Acustica</u>, <u>10</u> 44 (1960).
 - 14. R.S. Brokaw, <u>J. Chem. Physics</u>, <u>35</u> 1569 (1961).
 - 15. H. Blend, <u>Department of Physics</u>, <u>University of</u> <u>California at Los Angeles</u>, Technical Report No. 19 on contract Nonr 233(48) (1962). AD 283 964.
 - 16. M. Cher, <u>J. Chem. Physics</u>, <u>37</u> 2564 (1962).
 - S.W. Benson and H.E. O'Neal, <u>National Bureau</u> of <u>Standards</u> NSRDS-NBS 21 (1970).
 - 18. E. Zimet, J. Chem. Physics, 53 515 (1970).
 - 19. K. Schofield, <u>Delco Electronics, General</u> <u>Motors Corpn</u>., Report TR71-57 (1971): to be published in <u>J. Physic. Chem. Ref. Data</u>, <u>1</u> (4) (1972).