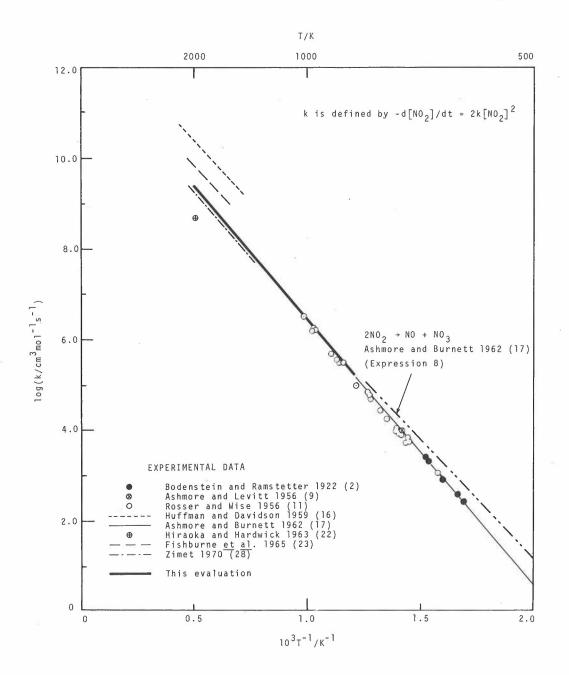
THERMODYNAMIC DATA

т	ΔΗ ⁰ . (kj mol ⁻¹)	∆S ⁰ (J K ⁻¹ mo1 ⁻¹)	log K _p (K _p in atm)	log K _c (K _c in mol cm ⁻³)	
(K)					
298	114.28	146.35	-12.40	-16.79	
300	114.31	146.45	-12.26	-16.66	
500	116.29	151.70	- 4.23	- 8.84	
1000	116.76	152.64	1.88	- 3.04	
1500	115.73	151.81	3.90	- 1.19	
2000	114.68	151.20	4.91	- 0.31	
2500	113.99	150.89	5.51	0.19	
3000	113.79	150.82	5.90	0.51	
3500	114.08	150.90	6.19	0.73	
4000	114.81	151.09	6.40	0.88	
4500	115,92	151.35	6.57	1.00	
5000	117.34	151.65	6.70	1.09	

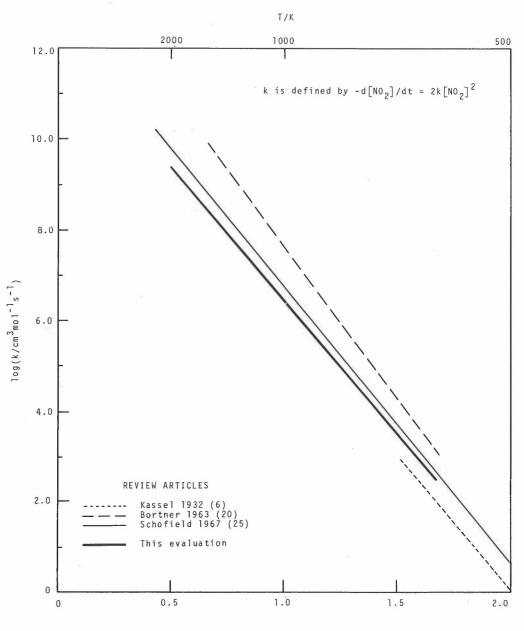
SI Units: $\log(K_p/N m^{-2}) = \log(K_p/atm) + 5.006$ $\log(K_c/mol m^{-3}) = \log(K_c/mol cm^{-3}) + 6$

RECOMMENDED RATE CONSTANT


 $k = 2.0 \times 10^{12} \exp(-13 \ 500/T) \ \text{cm}^3 \ \text{mol}^{-1} \ \text{s}^{-1}$ = 3.3 x 10⁻¹² exp(-13 500/T) cm³ molecule⁻¹ s⁻¹ (k is defined by -½d[N0₂]/dt = k[N0₂]².) Temperature Range: 600 - 2000 K

Suggested Error Limits for Calculated Rate Constant: $\pm 30\%$ in temperature range 600 - 1000 K, but slightly greater at higher temperatures. Note: Expression is that of ROSSER and WISE (11).

Rate Parameters: $\log(A/cm^3 mol^{-1} s^{-1}) = 12.30 \pm 0.07$


 $log(A/cm^{3} molecule^{-1} s^{-1}) = -11.48 \pm 0.07$ $E/J mol^{-1} = 112 550 \pm 600$ $E/cal mol^{-1} = 26 900 \pm 200$

Rate Constant k (cm ³ mol ⁻¹ s ⁻¹)	Temperature (K)	Method and Reference	Comments
2.6 × 10^2	592	Static system. NO ₂ at	Data discussed by NORRISH (4)
3.8×10^2	603	\sim 200 mm Hg (27 kN m ⁻²).	although incorrect temperature
8.5×10^2	627	Reaction followed mano-	coefficient taken (see (6)).
2.0×10^3	651	metrically.	Value of k ₁ at 656 K used by (7).
2.5×10^3	656	BODENSTEIN and	$NO_2 + NO_2 \rightarrow NO + NO + O_2$ 1
		RAMSTETTER 1922 (2)	Data shown by LEVITT to give
	9 19		$k_1 = 4.9 \times 10^{12} \exp(-13 \ 640/T)$ $cm^3mol^{-1}s^{-1}$ (quoted in (17)).
9.5×10^3	707	Static system. NO ₂ at	Initial rapid rate of NO ₂
		pressures \sim 20 mm Hg	removal attributed to a second
		(2.7 kN m ⁻²). Reaction	bimolecular reaction, 2
		followed by monitoring NO_2	$NO_2 + NO_2 \rightarrow NO + NO_3$ 2
		photometrically.	(see Discussion).
		ASHMORE and LEVITT 1956 (9)	
1.17 × 10 ³	636	Static system. NO ₂ at	Disappearance second-order in
5.60 × 10 ³	693	pressures < 10 mm Hg	NO ₂ . No surface or pressure
6.45×10^3	695	(1.3 kN m ⁻²). NO ₂ dis-	effects observed. Points
5.90 x 10 ³	698	appearance monitored by	measured from Fig. 2 of (11).
7.60 x 10^3	708	photometry at 440 nm.	Authors deduce $k_1 = 2 \times 10^{12}$
8.55×10^3	712	ROSSER and WISE 1956 (11)	exp(-13 500/T) cm ³ mol ⁻¹ s ⁻¹ .
1.06 × 10 ⁴	718		Used in (15,19,24 and 26).
9.20×10^3	721		Recommended by (27).
1.74×10^4	740		
2.65 × 10 ⁴	756		
4.88 × 10 ⁴	782		
5.60×10^4	786		
6.45×10^4	790		
9.60 x 10 ⁴	823		
2.97×10^5	868		
3.11 × 10 ⁵	876		
3.58 × 10 ⁵	887		
5.00 × 10 ⁵	906		
1.61 x 10 ⁶	966		
1.65 × 10 ⁶	973		
1.50 x 10 ⁶	978		
3.16 x 10 ⁶	1018		

.

$$NO_2 + NO_2 \longrightarrow NO + NO + O_2$$

10³T⁻¹/K⁻¹

304

Rate Constant k Temperature Method and Reference Comments $(cm^{3} mol^{-1} s^{-1})$ (K) 1.3x10¹³ exp(-(12 500±2500)/T) 1400-2300 Shock tube study, NO2 Large scatter apparent on the (0.3-15%) in Ar. NO2 raw data. Disappearance of NO₂ disappearance monitored due to two concurrent mechanisms, by spectrophotometry. one initiated by the unimolecular dissociation of NO₂ (see HUFFMAN and DAVIDSON Discussion), the other being 1959 (16) the bimolecular reaction l $NO_2 + NO_2 \rightarrow NO + NO + O_2$ Authors suggest that results of STEINBERG and LYON (15) on the thermal decomposition of NO₂ can be interpreted in the same way. 2x10¹² exp (-(13 500±50)/T) 473-823 Static system. Reaction Initial rapid rate of NO2 followed manometrically removal attributed to a second bimolecular reaction, 2 (see (for large [NO₂]) and photometrically (for also (9)). $small [N0_2]$). $NO_2 + NO_2 \rightarrow NO + NO_3$ 2 ASHMORE and BURNETT Rate parameters for k₂ determined as log A = 11.59 ± 0.25 1962 (17) (in cm³mol⁻¹s⁻¹ units) and $E = 100 \pm 3 \text{ kJ mol}^{-1} (23.9 \pm 0.6)$ kcal mol⁻¹). See Discussion. Used in (21). $\sim 5 \times 10^8$ 2000 Shock tube study, 1% Approximate value only. Authors found that the NO₂ decay was NO₂ in Ar. NO₂ disfirst order in [NO2] which they appearance monitored by u.v. emission measureexpressed as $-\frac{1}{2}d[NO_2]/dt =$ $k_1 [NO_2]^2 + k_4 [NO_2] [Ar]$ ments. $NO_2 + NO_2 \rightarrow NO + NO + O_2$ HIRAOKA and HARDWICK 1 1963 (22) $NO_2 + M \rightarrow NO + O + M$ (where M = Ar). Assuming that $k_1 \simeq k_4$ at 2000 K, this was approximated to k [NO2] [M] (where $[M] = [Ar] + [NO_2]$). From this, they calculated that $k_1 \simeq 5 \times 10^8 \text{ cm}^3 \text{mol}^{-1} \text{s}^{-1}$ at 2000 к.

 $NO_2 + NO_2 \rightarrow NO + NO + O_2$

Rate Constant k Temperature Method and Reference $(cm^3 mol^{-1} s^{-1})$ (K) $4.5 \times 10^{12} \exp(-12 \ 900/T)$ Shock tube study, 1500-2100 0.5-3% NO2 in Ar. NO₂ disappearance monitored by emission and absorption measurements. FISHBURNE, BERGBAUER and EDSE 1965 (23) $1.5 \times 10^{12} \exp(-13\ 500/T)$ 1300-2100 Shock tube study, NO2 (<10%) in Ar. NO2 disappearance monitored by absorption measurements at 435 nm. ZIMET 1970 (28) REVIEW ARTICLES $2 \times 10^{10} T^{\frac{1}{2}} exp(-13 370/T)$ 470-660 Evaluation. KASSEL 1932 (6) $5 \times 10^{12} T^{\frac{1}{2}} exp(-15 200/T)$ Unspecified Recommended expression. BORTNER 1963 (20)

$NO_2 + NO_2 \rightarrow NO + NO + O_2$

1.1x10¹³ exp(-14 270/T)

2x10¹² exp(-13 500/T)

375-2300 Evaluation.

600-2000

SCHOFIELD 1967 (25)

Evaluation. BAULCH, DRYSDALE and HORNE 1970 (27) Rate constant refers to NO_2 removal by reactions 1 and 2 $NO_2 + NO_2 \rightarrow NO + NO + O_2$ 1 $NO_2 + NO_2 \rightarrow NO + NO_3$ 2 and may be high. Rate expression gives best fit to experimental results, and is based on an activation energy derived from results of ROSSER and WISE (11) and ASHMORE and BURNETT (17).

Comments

Best fit to the experimental results. Few details given. Activation energy apparently taken from (11).

Based on the results of BODENSTEIN and RAMSTETTER (2) and data on the reverse reaction combined with the equilibrium constant of BODENSTEIN and LINDNER (1). Quoted in (10).

Based on figures quoted by HARTECK and DONDES (14). This expression lies far above the existing data.

Least squares fit to data of (11,16,17 and 23). E_1 too high (25).

Based on (2,9,11,16,17,22 and 23).

1

DISCUSSION

The bimolecular decomposition of NO_2 is the reverse of the NO oxidation reaction. The mechanism, which may be complex, is discussed in detail above (this Volume, p.294).

 $NO_2 + NO_2 \rightarrow NO + NO + O_2$ In this evaluation, the rate constant (k₁) is defined by the expression

$$-\frac{1}{2} d [NO_2]/dt = k_1 [NO_2]^2$$

All of the rate data quoted in the table have been divided by two to conform with this definition.

The thermal equilibrium between NO_2 and NO was examined in detail by Bodenstein and Lindner (1) as part of a comprehensive study of the NO_2 and NO/O_2 systems: their equilibrium data have been modified only slightly by subsequent work. Norrish has examined the photochemical equilibrium by subjecting NO_2 to ultraviolet radiation (350-400 nm) and observing the pressure change (3,5). The results are compatible with the photosensitive equilibrium

$$NO_2 + NO_2 \frac{\text{light}}{\text{dark}} NO + NO + O_2$$

The photo-initiated reaction has also been observed by Blacet, Hall and Leighton (18).

Considerable evidence exists for an alternative reaction (9, 12, 13, 17)

 $NO_2 + NO_2 \rightarrow NO + NO_3$ 2

giving rise to the reactive species NO_3 which then reacts with NO_2 .

 $NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$ 3

The species NO_3 is believed to be the symmetric nitrate radical (17) rather than the unsymmetric peroxynitrite radical (ONOO) which may be the intermediate in reaction 1 (see this Volume, p.294). In the thermal decomposition of NO_2 at temperatures below 1000 K, the rate commences at a high value but falls quite

307

quickly to a value associated with reaction 1. Ashmore and his co-workers (9,17) have shown that this is due to the participation of reactions 2 and 3, but as the NO concentration builds up, NO₂ is regenerated efficiently by reaction -2,

$$NO + NO_3 \rightarrow NO_2 + NO_2 -2$$

and only reaction 1 contributes to the overall removal of NO_2 . If it is assumed that the NO_3 concentration reaches a steady state, then from the above,

$$\frac{1}{[NO_2]^2} \cdot \frac{d[NO_2]}{dt} = k_1 + \frac{k_2 k_3 [NO_2]}{\frac{1}{2}k_2 [NO] + k_3 [NO_2]}$$
 A

A plot of $1/[NO_2]$ v. time will have an initial slope of $k_1 + k_2$. However, as reaction proceeds and [NO] increases, then provided $k_{-2} >> k_3$ the second term on the right hand side of equation A will become insignificant, and the slope decreases to k_1 . Addition of nitric oxide initially suppresses the curvature of the plot completely (9). Ashmore and Burnett (17) deduced the following expression for the rate constant of reaction 2:

$$\log(k_2/cm^3mol^{-1}s^{-1}) = (11.59 \pm 0.25) - (12 \ 0.30 \pm 300)/2.303T$$

This is plotted on the Arrhenius diagram for comparison (see also p.357).

In the temperature range 600-1000 K, the results of Bodenstein and Ramstetter (2), Rosser and Wise (11) and Ashmore and Burnett (17) are in excellent agreement with one another. They predict

$$k_1 = 2.0 \times 10^{12} \exp(-13 \ 500/T) \ cm^3 mol^{-1} s^{-1}$$

В

The high temperature data from shock tube studies are scattered (16,22,23,28) although the expressions of Fishburne <u>et al</u>. (23) and Zimet (28) lie within a factor of two of expression C in the temperature range 1500-2100 K. The scatter probably reflects the difficulty of separating the effects of the bimolecular reactions (1 and 2) from the dissociation

5

$NO_2 + M \rightarrow NO + O + M$

and the subsequent oxygen atom reaction

$$NO_2 + O \rightarrow NO + O_2$$
.

Apparently, Zimet (28) did not consider reaction 5 in his determination of k_1 .

The available data suggest that expression C, originally derived by Rosser and Wise (11) may be applied with considerable accuracy over the temperature range 470-2000 K: in the range 470-1000 K, expression C describes the data to better than 30%. However, it predicts the reverse reaction will have a small positive activation energy ($\sim 1.7 \text{ kJ mol}^{-1}$ (0.4 kcal mol⁻¹)) between 500 and 1000 K, whereas the data on the reverse reaction indicates a negative activation energy of about -4.2 kJ mol⁻¹ (-1 kcal mol⁻¹) from 300-700 K. The discrepancy may lie in the occurrence of a complex mechanism as discussed elsewhere (this Volume, p.294). However, it is significant that the results from both forward and reverse reactions are compatible with the equilibrium constant in the temperature range 500-700 K (6).

The mechanism of reaction 1 is not known in detail; the various possibilities have been discussed in the evaluation of the reverse reaction (this Volume, p.294). Herschbach <u>et al</u>. (10) have calculated an A-factor for the reaction and have shown that it is more likely to proceed through a linear than a cyclic transition state.

REFERENCES

- M. Bodenstein and Lindner, <u>Z. Physik. Chem.</u>, <u>100</u> 82 (1922).
- M. Bodenstein and H. Ramstetter, <u>Z. Physik.</u> Chem., <u>100</u> 106 (1922).
- 3. R.G.W. Norrish, <u>J. Chem. Soc</u>., 761 (1927).
- R.G.W. Norrish, <u>Nature</u>, <u>122</u> 923 (1928).
- 5. R.G.W. Norrish, <u>J. Chem. Soc</u>., 1158 (1929).
- L.S. Kassel, <u>The Kinetics of Homogeneous</u> <u>Gas Reactions</u>, (Chemical Catalogue Co., New York, 1932). p.156.
- G.M. Calhoun and R.H. Crist, <u>J. Chem.</u>
 Physics, 5 301 (1937).
- H.J. Schumacher, <u>Z. Elektrochem</u>., <u>47</u> 673 (1941).
- P.G. Ashmore and B.P. Levitt, <u>Research</u> (<u>Correspondence</u>), <u>9</u> S25 (1956).
- D.R. Herschbach, H.S. Johnston, K.S. Pitzer and R.E. Powell, <u>J. Chem. Physics</u>, <u>25</u> 736 (1956).
- W.A. Rosser and H. Wise, <u>J. Chem. Physics</u>, <u>24</u> 493 (1956).
- P.G. Ashmore and B.P. Levitt, <u>J. Chem.</u> Physics, <u>27</u> 318 (1957).
- N. Davidson and G.L. Schott, <u>J. Chem.</u>
 Physics, <u>27</u> 317 (1957).
- P. Harteck and S. Dondes, <u>J. Chem.</u>
 <u>Physics</u>, <u>27</u> 546 (1957).
- M. Steinberg and T.F. Lyon, <u>131st National</u> <u>Meeting Amer. Chem. Soc</u>., Miami, Florida (April 1957).

- R.E. Huffman and N. Davidson, <u>J. Amer. Chem. Soc</u>.,
 81 2311 (1959).
 - P.G. Ashmore and M.G. Burnett, <u>Trans. Faraday Soc</u>., <u>58</u> 253 (1962).
 - F.E. Blacet, T.C. Hall and P.A. Leighton, <u>J. Amer.</u> <u>Chem. Soc.</u>, <u>84</u> 4011 (1962).
 - 19. H. Ford, 8th Combustion Symp., 119 (1962).
 - M.H. Bortner, <u>General Electric Co</u>., R63SD63 (1963). AD 418 159.
 - J.R. Gilbert and J.H. Thomas, <u>Trans. Faraday Soc.</u>, <u>59</u> 1600 (1963).
 - H. Hiraoka and R. Hardwick, <u>J. Chem. Physics</u>, 39 2361 (1963).
 - E.S. Fishburne, D.M. Bergbauer and R. Edse, <u>J.</u>
 <u>Chem. Physics</u>, <u>43</u> 1847 (1965); <u>Aerospace Research</u>
 Lab., ARL 65-169 (1965). AD 622 692.
 - 24. B.E. Davis, <u>Department of Fuel Technology and</u> <u>Chemical Engineering, Sheffield University</u>, Annual Report No. 1 (September 1967).
 - 25. K. Schofield, Planet. Space Sci., 15 643 (1967).
 - T.K. Rai Dastidar, P.K. Bhattacharyya and
 A.K. Barua, <u>Trans. Faraday Soc</u>., <u>65</u> 2913 (1969).
 - 27. D.L. Baulch, D.D. Drysdale and D.G. Horne, <u>High</u> <u>Temperature Reaction Rate Data</u>, Report No. 5, (Leeds University, 1970) p.45.
 - 28. E. Zimet, <u>J. Chem. Physics</u>, <u>53</u> 515 (1970).