Chapter 5 Acid-Base Equilibria

Key concepts:

  • Acids react with water to produce hydronium and conjugate base
  • Bases react with water to produce hydroxide and conjugate acid
  • Acids and bases react with each other (neutralization reaction)

Note: Equilibrium values are given at 25 °C in water unless otherwise stated.


We define the following notation for acids and bases

  • Acid: HA, HB+
  • Base: B, A

There are different definitions for acids and bases.

An Arrhenius acid is is a substance that dissociates in water to produce H+ ions.

\[\color{green}{\mathrm{HCl}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \color{red}{\mathrm{Cl^-}}(aq)\]

or generally

\[\color{green}{\mathrm{HA}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \color{red}{\mathrm{A^-}}(aq)\]


An Arrhenius base is is a substance that dissociates in water to produce OH ions.

\[\color{red}{\mathrm{NH_3}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{OH^-} + \color{green}{\mathrm{NH_4^+}}(aq)\]

or generally

\[\color{red}{\mathrm{B}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{OH^-}(aq) + \color{green}{\mathrm{HB^+}}(aq)\]


A Brønsted-Lowry acid is a substance that donates a proton (i.e. is a proton donor).

\[\color{green}{\mathrm{HCl}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \color{red}{\mathrm{Cl^-}}(aq)\]

Here, HCl, an acid, donates its proton to water. A general scheme can be written as

\[\color{green}{\mathrm{HA}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \color{red}{\mathrm{A^-}}(aq)\]


A Brønsted-Lowry base is a substance that accepts a proton (i.e. is a proton acceptor).

\[\color{red}{\mathrm{NH_3}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{OH^-}(aq) + \color{green}{\mathrm{NH_4^+}}(aq)\]

Here, NH3, an base, accepts a proton from water. A general scheme can be written as

\[\color{red}{\mathrm{B}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{OH^-}(aq) + \color{green}{\mathrm{HB^+}}(aq)\] or

\[\color{red}{\mathrm{A^-}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{OH^-}(aq) + \color{green}{\mathrm{HA}}(aq)\]


A Lewis acid is a substance that accepts a pair of electrons (i.e. a lone-pair acceptor).

\[\color{green}{\mathrm{HCl}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \color{red}{\mathrm{Cl^-}}(aq)\]

Here, HCl dissociates into H+ and Cl. The oxygen on water donates a lone pair of electrons to the free proton and forms a bond to give the hydronium ion, H3O+.

Lewis Acid Example


A Lewis base is a substance that donates a lone pair of electrons (i.e. lone-pair donor).

\[\color{red}{\mathrm{NH_3}}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{OH^–}(aq) + \color{green}{\mathrm{NH_4^+}}(aq)\]

Here, the lone pair on the nitrogen in ammonia, NH3, is donated to a proton on water forming a bond to give NH4+.

Lewis Base Example


Practice


Determine the type of acid (or base) that HCN is behaving as. Which definition(s) does it comply with?

\[\mathrm{HCN}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \mathrm{CN^-}(aq)\]

Solution
  1. Arrhenius acid - HCN produces hydronium when dissolved in water
  2. Brønsted-Lowry acid - HCN donates a proton to water
  3. Lewis acid - HCN accepts a lone electron pair from water


The word conjugate means “joined together” (e.g. coupled) especially “in pairs”. In acid/base chemistry, a conjugate is a pairing of reactant and product. For example, a deprotonated acid, A), is the conjugate base of the starting acid, HA.

\[\begin{alignat*}{3} \color{green}{\mathrm{HA}} ~~~ &\rightleftharpoons ~~~~~~ \mathrm{H^+} ~~ &&+ ~~~~~~~~~~~\color{red}{\mathrm{A^-}}\\[1.5ex] \mathrm{acid} ~~~ &\rightleftharpoons ~~ \mathrm{proton}~~ &&+ ~~\mathrm{conjugate~base} \end{alignat*}\]

An acid can also be generalized as HB+.

\[\begin{alignat*}{3} \color{green}{\mathrm{HB^+}} ~~~ &\rightleftharpoons ~~~~~~ \mathrm{H^+} ~~ &&+ ~~~~~~~~~~~ \color{red}{\mathrm{B}}\\[1.5ex] \mathrm{acid} ~~~ &\rightleftharpoons ~~ \mathrm{proton} ~~ &&+ ~~ \mathrm{conjugate~base} \end{alignat*}\]

To determine the conjugate base of any acid, simply deprotonate the acid (remove an H+). The resulting species is the conjugate base.


A conjugate acid is the opposite of a conjugate base. A conjugate acid can be generally written as HB+ or HA.

\[\begin{alignat*}{3} \color{red}{\mathrm{B}}~~ &~~~+~~~~~~ \mathrm{H^+} ~~~ &&\rightleftharpoons ~~~~~~~~~~~ \color{green}{\mathrm{HB^+}} \\[1.5ex] \mathrm{base} &~~~+~~ \mathrm{proton} ~~~ &&\rightleftharpoons ~~ \mathrm{conjugate~acid} \end{alignat*}\]

\[\begin{alignat*}{3} \color{red}{\mathrm{A^-}} &~~~+~~~~~~ \mathrm{H^+} ~~~ &&\rightleftharpoons ~~~~~~~~~~~ \color{green}{\mathrm{HA}} \\[1.5ex] \mathrm{base} &~~~+~~ \mathrm{proton} ~~~ &&\rightleftharpoons ~~ \mathrm{conjugate~acid} \end{alignat*}\]

To determine the conjugate acid of any base, simply protonate the base (add an H+). The resulting species is the conjugate acid.


Practice


Identify the conjugate (and type) to each of the following:

  1. HNO3 (acid)
  2. NH4+ (acid)
  3. OH (base)
Solution
  1. NO3   ;   conjugate base
  2. NH3   ;   conjugate base
  3. H2O   ;   conjugate acid


An amphoteric substance is one that can behave both as an acid and a base depending on the environment it is in. An amphiprotic substance is a type of amphoteric substance and is one that can accept or donate a proton, H+.

One fundamental example is water, an amphiprotic substance. When an acid is added to water, water accepts a proton (and behaves as a base). When a base is added to water, water donates a proton (and behaves as an acid).

Aluminum hydroxide is an example of an amphoteric substance. When reacting with an acid, such as HCl, Al(OH)3 acts as a Lewis base.

\[\mathrm{Al(OH)_3}(aq) + \mathrm{3HCl}(aq) \rightleftharpoons \mathrm{AlCl_3}(aq) + \mathrm{3H_2O}(l)\]

Al(OH)3 behaves as a Lewis acid when reacting with NaOH (molecular equation given below).

\[\mathrm{Al(OH)_3}(aq) + \mathrm{NaOH}(aq) \rightleftharpoons \mathrm{Na[Al(OH)_4]}(aq)\]

We could write the above reaction in its net ionic form as

\[\mathrm{Al(OH)_3}(aq) + \mathrm{OH^-}(aq) \rightleftharpoons \mathrm{Al(OH)_4^-}(aq)\]