5.3 Auto-ionization of Water

Water naturally auto-ionizes to produce equal concentrations of hydronium and hydroxide. The extent of this reaction is very small.

\[\mathrm{2H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \mathrm{OH}^-(aq)\]

\[K_{\mathrm{w}} = [\mathrm{H_3O^+}][\mathrm{OH^-}] = 1.0\times 10^{-14} ~~~(\mathrm{at}~25~^{\circ}\mathrm{C})\]

Note that water is amphiprotic in this reaction. One water donates a proton while another water accepts the proton.

The relationship of the strength of an acid to its conjugate base is related through Kw.

\[K_{\mathrm{a}} \times K_{\mathrm{b}} = K_{\mathrm{w}}\]

or in log form

\[\mathrm{p}K_{\mathrm{a}} + \mathrm{p}K_{\mathrm{b}} = \mathrm{p}K_{\mathrm{w}}\]

We can see this relationship clearly by writing out the acid- and base-ionization reactions and adding them together.

\[\begin{align*} \color{green}{\mathrm{HA}}(aq) + \mathrm{H_2O}(aq) &\rightleftharpoons \mathrm{H_3O^+}(aq) + \color{red}{\mathrm{A^-}}(aq) \\ \color{red}{\mathrm{A^-}}(aq) + \mathrm{H_2O}(aq) &\rightleftharpoons \mathrm{OH^–}(aq) + \color{green}{\mathrm{HA}}(aq)\\[1.5ex] \mathrm{2H_2O}(l) &\rightleftharpoons \mathrm{H_3O^+}(aq) + \mathrm{OH}^-(aq) \end{align*}\]

Recall that adding two equations together has an equilibrium constant that is the result of multiplying the original equilibrium constants together.

\[\begin{align*} K_{\mathrm{w}} &= K_{\mathrm{a}} \times K_{\mathrm{b}} \\[1.5ex] &=\dfrac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\color{red}{\mathrm{A}^{-}}\right]}{[\color{green}{\mathrm{HA}}]} \times \dfrac{\left[\color{green}{\mathrm{HA}}\right]\left[\mathrm{OH}^{-}\right]}{[\color{red}{\mathrm{A^-}}]}\\[2.5ex] &= [\mathrm{H_3O^+}][\mathrm{OH^-}] \end{align*}\]


Increasing the temperature of water slightly shifts Kw to the right.


T (°C) Kw pKw pH pOH

0

1.14 × 10–15

14.94

7.47

7.47

10

2.93 × 10–15

14.53

7.27

7.26

20

6.81 × 10–15

14.17

7.08

7.08

25

1 × 10–14

14

7

7

30

1.47 × 10–14

13.83

6.92

6.92

40

2.92 × 10–14

13.54

6.77

6.77

50

5.48 × 10–14

13.26

6.63

6.63

100

5.13 × 10–13

12.29

6.14

6.14


Notice that pKw is equal to 14 at only one temperature… 25 °C. For all temperatures, pH is equal to pOH for pure water. This means that for any temperature, pure water is a neutral solution.


Endo or Exothermic?


Practice


What is the pH and pOH of pure water at 10 °C? Kw(H2O) = 2.93 × 10–15 (at 10 °C).

Solution

For the reaction

\[2\mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \mathrm{OH^-}(aq)\] Solve for x

\[\begin{align*} [\mathrm{H_3O^+}][\mathrm{OH^-}] &= K_{\mathrm{w}} \\[1.25ex] x^2 &= 2.93\times 10^{-15} \\[1.25ex] x &= 5.41\times 10^{-8}~M \\[1.25ex] [\mathrm{H_3O^+}] = [\mathrm{OH^-}] &= 5.41\times 10^{-8}~M \end{align*}\]

Find pH and pOH

\[\begin{align*} \mathrm{pH} &= -\log[\mathrm{H_3O^+}] \\[1.25ex] &= -\log(5.41\times 10^{-8}) \\[1.25ex] &= 7.27 \\[2ex] \mathrm{pOH} &= -\log[\mathrm{OH^-}] \\[1.25ex] &= -\log(5.41\times 10^{-8}) \\[1.25ex] &= 7.27 \\[2ex] \end{align*}\]


Practice


What is the Kb for the conjugate base of acetic acid at 50 °C?

Ka(CH3COOH) = 1.633 × 10–5 and Kw(H2O) = 5.48 × 10–14 (at 50 °C).

Solution

Kb(CH3COO) = 3.36 × 10–9 at 50 °C.

\[\begin{align*} K_{\mathrm{a}} \times K_{\mathrm{b}} &= K_{\mathrm{w}} \\[1.5ex] K_{\mathrm{b}} &= \dfrac{K_{\mathrm{w}}}{K_{\mathrm{a}}} \\[1.5ex] &= \dfrac{5.48\times 10^{-14}}{1.633\times 10^{-5}} \\[1.5ex] &= 3.36\times 10{-9} \end{align*}\]

Math String: 5.48e-14 / 1.633e-5