8.2 Balancing Redox Reactions

Redox reactions involve additional considerations when balancing when compared to balancing regular chemical equations. There exists multiple techniques to balancing redox reactions, one of which is presented below (called the half-reaction method). This method assumes that the redox reaction is taking place in aqueous solution, a common environment for electrochemical reactions.

Steps for Balancing a Redox Reaction in Acidic/Basic Conditions

  1. Assign oxidation numbers to all atoms
  2. Separate reaction into two half-reactions
  3. Balance all atoms except H & O
  4. Balance O (by adding H2O)
  5. Balance H (by adding H+)
  6. Balance the charges in each half-reaction (by adding e)
  7. Balance e between both half-reactions
  8. Combine both half-reactions and cancel out like terms
    • Stop here if balancing for acidic conditions
    • Continue to Step 9 if balancing for basic conditions
  9. If the reaction is taking place in a basic environment, add a number of OH to both sides of the reaction equal to the number of H+ that exists in Step 8. Combine the H+ and OH on one side of the reaction to make H2O.


Let us illustrate these steps by balancing the following redox reaction in a basic aqueous environment.

\[\mathrm{Fe^{2+}}(aq) + \mathrm{MnO_4^-}(aq) \longrightarrow \mathrm{Fe^{3+}}(aq) + \mathrm{Mn^{2+}}(aq)\]

Step 1: Assign oxidation numbers to all atoms.

\[\begin{alignat*}{3} & \mathrm{Fe^{2+}}(aq) ~+~ && \mathrm{MnO_4^-}(aq) ~ \longrightarrow ~ &&\mathrm{Fe^{3+}}(aq) ~+~ && \mathrm{Mn^{2+}}(aq)\\ & ~(2) && ~(7)(-2) && ~(3) && ~(2) \end{alignat*}\]

Fe is oxidized. Mn is reduced.


Step 2: Separate reaction into two half-reactions

I omit the phase labels for clarity. We will add them back in at the end.

Oxidation half-reaction

\[\mathrm{Fe^{2+}} \longrightarrow \mathrm{Fe^{3+}}\]

Reduction half-reaction

\[\mathrm{MnO_4^-} \longrightarrow \mathrm{Mn^{2+}}\]


Step 3: Balance all atoms except H & O

All non-hydrogen/oxygen atoms are already balanced. Move on to Step 4.

\[\mathrm{Fe^{2+}} \longrightarrow \mathrm{Fe^{3+}}\]

\[\mathrm{MnO_4^-} \longrightarrow \mathrm{Mn^{2+}}\]


Step 4: Balance O (by adding H2O)

\[\mathrm{Fe^{2+}} \longrightarrow \mathrm{Fe^{3+}}\]

\[\mathrm{MnO_4^-} \longrightarrow \mathrm{Mn^{2+}} + \color{magenta}{\mathrm{4H_2O}}\]


Step 5: Balance H (by adding H+)

\[\mathrm{Fe^{2+}} \longrightarrow \mathrm{Fe^{3+}}\]

\[\color{magenta}{\mathrm{8H^+}} + \mathrm{MnO_4^-} \longrightarrow \mathrm{Mn^{2+}} + \mathrm{4H_2O}\]


Step 6: Balance the charges in each half-reaction (by adding e)

\[\mathrm{Fe^{2+}} \longrightarrow \mathrm{Fe^{3+}} + ~\color{magenta}{e^-}\]

\[\color{magenta}{5e^-} + \mathrm{8H^+} + \mathrm{MnO_4^-} \longrightarrow \mathrm{Mn^{2+}} + \mathrm{4H_2O}\]


Step 7: Balance e between both half-reactions

Multiply the oxidation half-reaction by 5. Both half-reactions now have 5 electrons.

\[\begin{align*} \color{magenta}{5}[\mathrm{Fe^{2+}} \longrightarrow \mathrm{Fe^{3+}} + e^-] \rightarrow \\ \mathrm{5Fe^{2+}} \longrightarrow \mathrm{5Fe^{3+}} + 5e^- \end{align*}\]

\[\begin{align*} 5e^- + \mathrm{8H^+} + \mathrm{MnO_4^-} \longrightarrow \mathrm{Mn^{2+}} + \mathrm{4H_2O} \end{align*}\]


Step 8: Combine both half-reactions and cancel out like terms

\[\begin{array}{rl} \require{cancel} \mathrm{5Fe^{2+}} &\longrightarrow \mathrm{5Fe^{3+}} + 5e^- \\[1.5ex] 5e^- + \mathrm{8H^+} + \mathrm{MnO_4^-} &\longrightarrow \mathrm{Mn^{2+}} + \mathrm{4H_2O} \\[0.75ex] \hline \mathrm{5Fe^{2+}} + 5e^- + \mathrm{8H^+} + \mathrm{MnO_4^-} &\longrightarrow \mathrm{5Fe^{3+}} + 5e^- + \mathrm{Mn^{2+}} + \mathrm{4H_2O}\\[3.0ex] \mathrm{5Fe^{2+}} + \cancel{5e^-} + \mathrm{8H^+} + \mathrm{MnO_4^-} &\longrightarrow \mathrm{5Fe^{3+}} + \cancel{5e^-} + \mathrm{Mn^{2+}} + \mathrm{4H_2O}\\[1.5ex] \mathrm{5Fe^{2+}} + \mathrm{8H^+} + \mathrm{MnO_4^-} &\longrightarrow \mathrm{5Fe^{3+}} + \mathrm{Mn^{2+}} + \mathrm{4H_2O} \end{array}\]

If we were balancing the redox reaction in a non-basic environment, we would not continue on to Step 9. We would simply add the phase labels back in and be done.


Step 9: If the reaction is taking place in a basic environment, add a number of OH to both sides of the reaction equal to the number of H+ that exists in Step 8. Combine the H+ and OH on one side of the reaction to make H2O.

Here we add eight OH.

\[\begin{align*} \mathrm{5Fe^{2+}} + \mathrm{8H^+} + \color{magenta}{\mathrm{8OH^-}} + \mathrm{MnO_4^-} &\longrightarrow \mathrm{5Fe^{3+}} + \mathrm{Mn^{2+}} + \mathrm{4H_2O} + \color{magenta}{\mathrm{8OH^-}} \end{align*}\]

Combine H+ and OH on the left hand side to make 8H2O. Canacel out waters.

\[\begin{align*} \require{cancel} \mathrm{5Fe^{2+}} + \cancelto{4}{8}\!\mathrm{H_2O} + \mathrm{MnO_4^-} &\longrightarrow \mathrm{5Fe^{3+}} + \mathrm{Mn^{2+}} + \cancel{\mathrm{4H_2O}} + \mathrm{8OH^-}\\[1.5ex] \mathrm{5Fe^{2+}} + \mathrm{4H_2O} + \mathrm{MnO_4^-} &\longrightarrow \mathrm{5Fe^{3+}} + \mathrm{Mn^{2+}} + \mathrm{8OH^-} \end{align*}\]

Add the phase labels back into the reaction.

\[\mathrm{5Fe^{2+}}(aq) + \mathrm{4H_2O}(l) + \mathrm{MnO_4^-}(aq) \longrightarrow \mathrm{5Fe^{3+}}(aq) + \mathrm{Mn^{2+}}(aq) +\mathrm{8OH^-}(aq)\]


Practice


Balance the following redox reaction in a basic aqueous environment.

\[\mathrm{I}^{-}(aq)+\mathrm{MnO}_{4}^{-}(aq) \longrightarrow \mathrm{I_2}(aq)+\mathrm{MnO_2}(s)\]

Answer

\[6\mathrm{I}^{-}(aq) + \mathrm{4H_2O}(l) + 2\mathrm{MnO}_{4}^{-}(aq) \longrightarrow 3\mathrm{I}_{2}(aq) + 2\mathrm{MnO}_{2}(s) + 8\mathrm{OH^-}(aq)\]